

Coatings for Underground Concrete Structures

Kayla Hanson, P.E. Concrete Sealants

Gainey's Wastewater Conference 2023

Learning Objectives

- Describe different situations where coatings improve concrete's performance and durability, including where damp-proofing, waterproofing, sulfate resistance, or acid resistance are needed.
- List which types of coatings are appropriate for those scenarios.
- Explain why a coal tar epoxy coating is requested on the exterior of structures, issues associated with coal tar epoxy, and what alternatives are available.
- Outline best practices for concrete surface preparation and coating application.

Resilience

Resilience is a combination of durability and sustainability, and optimizes:

- Resources: materials, manpower, capital, time
- **Design:** material selection, system and structural design, installation
- **Operation and maintenance:** lower maintenance options, predictability
- **Production:** lean manufacturing, waste reduction, use of recycled materials

Resilience

- We want structures and systems to be designed to stand the test of time
- If these systems do experience deterioration over time, it shouldn't disrupt service
- We want the behavior and performance to be predictable
- We want to make the most of the materials and resources we put into these structures and systems

Concrete Basics

- Composite material made of natural ingredients, manufactured materials, and industrial byproducts
- New concrete has a pH of about 13
- Strong and durable in myriad conditions
- Raw materials, their proportions, manufacturing, and curing play a significant role in hardened concrete performance

Potentially Detrimental Substances

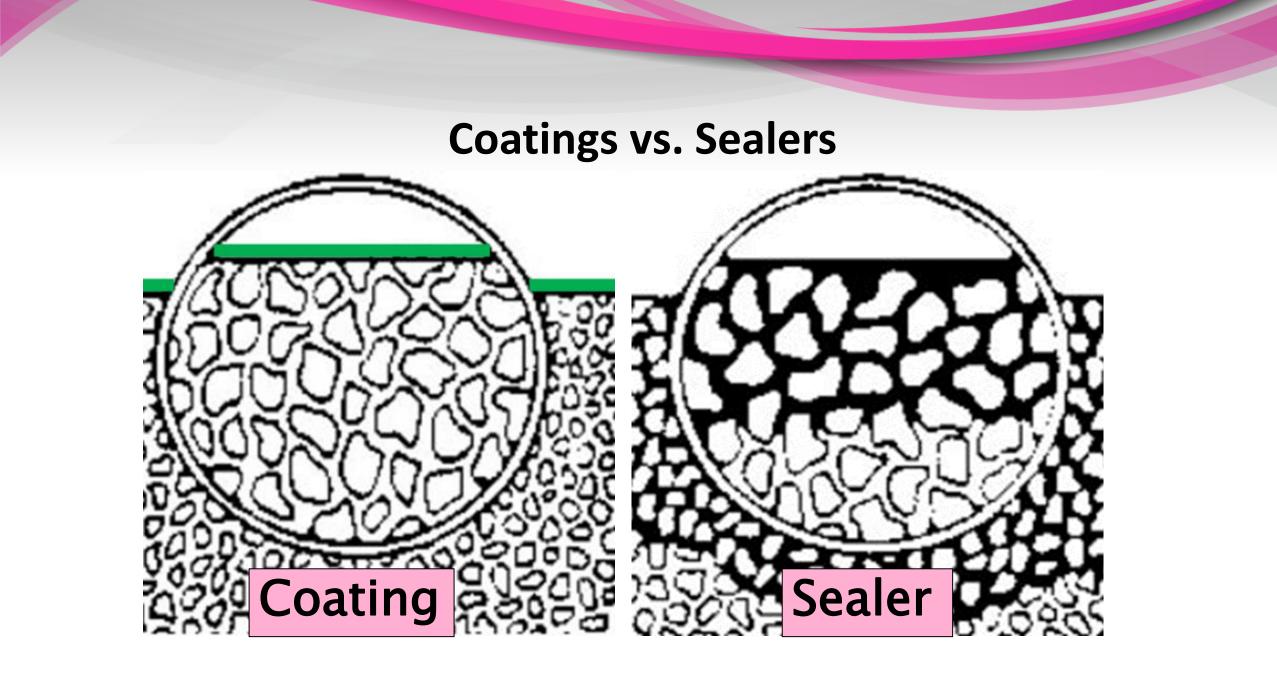
- Water
- Ice
- Sulfates
 - Sodium sulfate
 - Magnesium sulfate
 - Calcium sulfate
- Salts
 - Sodium chloride
 - Magnesium chloride
 - Calcium chloride

What Could Cause Degradation?

- Water could carry potentially detrimental substances into concrete; abrades concrete
- Ice expands in concrete's pores and can cause cracking
- Sulfates react with CH and CA3 to produce gypsum and ettringite; ettringite's volume is greater than CH and CA3 and can cause cracking
- Salts react with CH to produce CAOXY which is larger than CH so causes cracking; draws water into concrete which is problematic for areas with freeze/thaw cycles

Potentially Detrimental Substances

- ► CO₂
- Sugar
- Acids
 - Hydrochloric acid
 - Sulfuric acid
 - Lactic acid
 - Some cleaning agents


What Could Cause Degradation?

- CO₂ causes carbonation which produces CaCO₃ and contributes to steel corrosion
- Sugar sugar carried in water can cause slow degradation
- Acids react with CH and CSH and produce gypsum, also eventually produce ettringite, and lowers the concrete's pH

Coatings Overview

Common types:

• Acrylic, epoxy, urethane, modified silicone, asphalt, coal tar

Typical uses:

 Waterproofing, damp-proofing, protection against harsh substances like chemicals, oil, gas, or acids

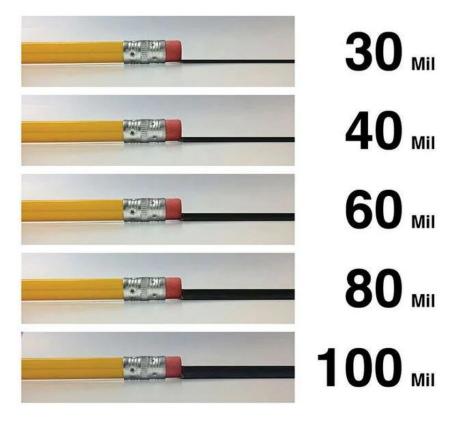
Note:

 Just because two coatings made from the same material doesn't mean they work the same way, can be used in the same service conditions, have the same application rate, have the same curing rate, etc.

Common Scenarios Where Coatings are Specified

- Damp-proofing
- Waterproofing
- Bases/high pH exposure
- Acids/low pH exposure
- Sulfate exposure

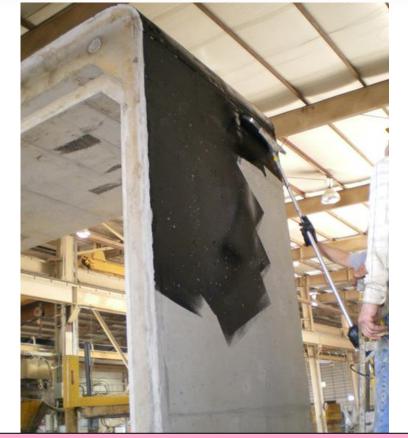
Clainey's


Waterproofing vs. Damp-Proofing

Waterproofing coatings:

- Typically 40 mils dry film thickness (0.040 in.) or greater in total thickness
- Resistant to hydrostatic pressure

Damp-proofing coatings:


- Typically 12 mils dry film thickness (0.012 in.) or less in thickness
- Not resistant to hydrostatic pressure

Waterproofing vs. Damp-Proofing

Damp-Proof Coating

Acrylic Coatings

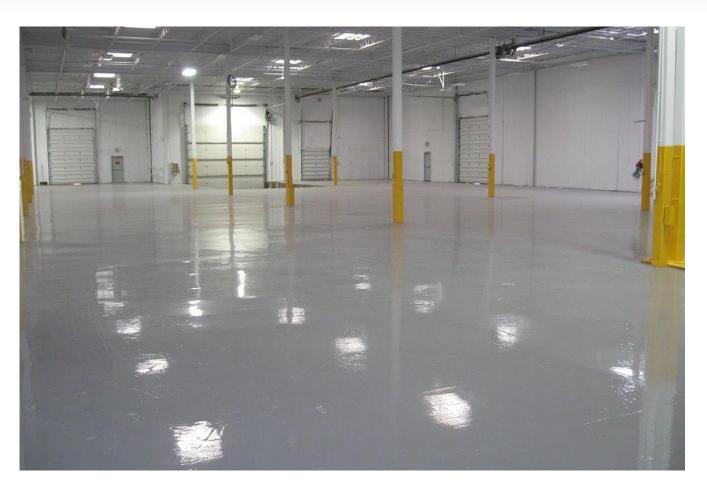
- Varying levels of flexibility
- Typically used for damp-proofing but some are capable of waterproofing
- Some offer moderate acid resistance

Epoxy Coatings

- Typically rigid but some flexible options exist
- Used to protect concrete in harsher environments like exposure to hydrocarbons, chemicals, acid, or bases

Asphalt Coatings

- Used for damp-proofing
- Can degrade over time



Urethane Coatings

- Rigid
- Good weatherability
- Good abrasion resistance
- Water-repellent

Hybrid Coatings

- Flexible
- Water-repellent
- Good weatherability
- Excellent acid-resistance
- Waterproof

Coal Tar Coatings

- Damp-proofing
- Protection against sulfate attack

Coal Tar Coatings

- Coal is distilled to produce coal tar pitches
- Coal tar pitches can be further modified by undergoing additional processing or incorporating additives to change the material properties
- Consistency ranges from thin liquids to semi-solids
- Coal tar epoxy exhibits intermediate properties between coal tar and epoxy, and contain:
 - Coal tar, filler, solvent, epoxy resin, curing agent

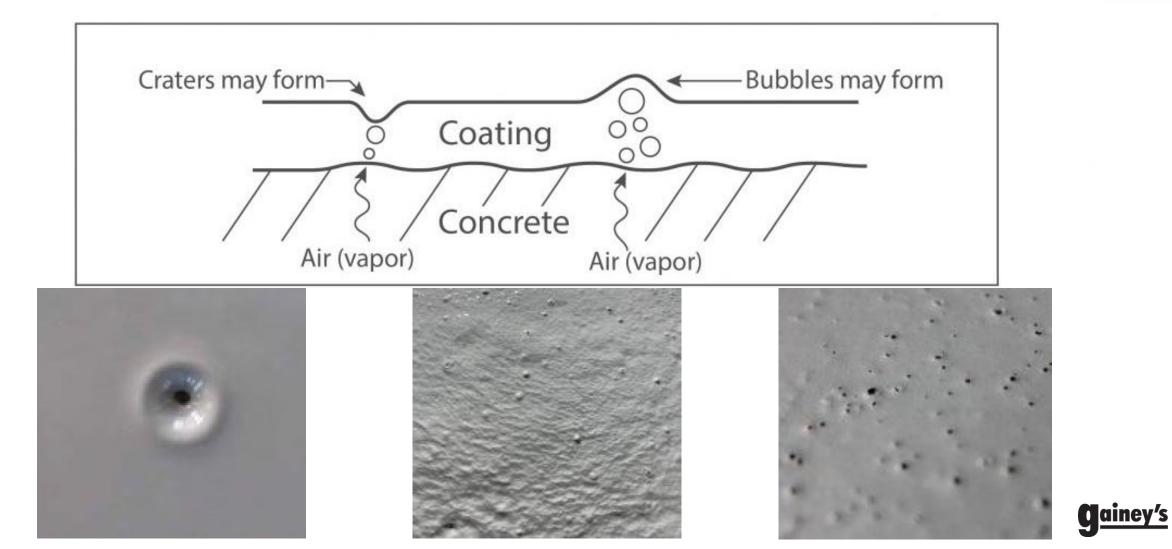
Disadvantages of Coal Tar Coatings

- Why is coal tar being restricted and removed from specifications?
 - It's toxic! Coal tar is a known carcinogen.
 - It requires significant personal protective equipment during application because of its toxic nature and because it's a skin irritant.
 - **Pinholes** are difficult to avoid.
 - It typically requires multiple coats, so it requires more labor.

Safe and Effective Coal Tar Alternatives

Waterborne coatings that:

- Are non-toxic and don't require special PPE
- Provide waterproofing, acid protection, and sulfate protection
- Are fast-drying
- Have high solids content
- Create tack-free surface in minutes
- Are freeze-thaw stable
- Are mildew resistant and bacterial stable
- Are appropriate for indoor/outdoor application
- Are brush, roller, or spray applied
- Create a flexible film with excellent impact resistance


Why does solids content matter?

The solids content of a coating impacts:

- Coating or sealer coverage rate (square feet per gallon)
- The variation between the coating's wet film thickness and dry film thickness

Outgassing-slow escape of air from concrete slab

Holiday Test / Spark Test

- Spark testing shows points of discontinuity (holidays) in coatings
- Relies on conductivity of the substrate
- Discontinuities in the coating allow the current to pass from the brush to the substrate and create a spark

For Best Results

- Review the product data sheet and consult with a technical representative regarding appropriateness of application
- Prime the substrate
- Ensure the substrate is sufficiently dry
- Ensure the substrate has cooled to ambient temperature
- Apply the coating within 20°F of the warmest part of the day
 - Ex. If the high temperature for the day is 70°F, apply the coating when it's between 50°F and 70°F.

For Best Results

- If applying multiple coats, use alternating colors (if available) to help see proper coverage
- If coating a slab on grade, use a moisture barrier under the slab and/or seal the substrate to prevent moisture wicking into the concrete

For Best Results

Follow manufacturer's recommendations for:

- Compatibility with service conditions
- Curing
- Re-coat time and procedures
- Waiting period prior to putting into service
- Everything, really 🙂

Installation Instructions

Low VOC, Waterborne Waterproof Coating

APPLICATIONS

Eco-friendly waterborne waterproof coating for most concrete structures. Safer alternative to coal-tar epoxy coatings.

COLORS CS-1200 is available in Red, Gray, and Black. Custom colors are available upon request.

• Fast-drying, concrete waterproofing

 Fast-drying, concrete waterproofing coating. 	Dry Time:	20-25 minutes
 High solids, tack-free surface in minutes. 	VOC content:	21 g/L
 Freeze-thaw stable. 	Viscosity:	15,000-21,000 CPS. (Brookfield Helipath
 Mildew resistant, bacterial stable. 	% Solids	71.0-73.0
 Polymer film protects against water intrusion. 	Coverage:	100-150 square feet per gallon
 Indoor/outdoor application. 	Thickness:	8-12 mils dry film thickness
 Brush, roller, or spray applied. 	Shelf Life:	One year min. Unopened can
 Flexible film with excellent impact resistance. 	Polymer:	Acrylic
 Flexible film at low temperatures. 	Clean-up:	Warm soapy water while wet
 Custom colors available upon request. 	ASTM G14 Impact Test:	Pass at 40'F

PHYSICAL PROPERTIES

DO NOT SUBJECT CONBLOCK CS-1200 TO FREEZING TEMPERATURES BEFORE USE

DIRECTIONS FOR USE

Surface Preparation: The concrete must be clean and free from dust, dirt, grease, laitance, and debris before application of CS-1200. Inspect surface for soundness. Repair or remove any surface irregularities and loose concrete, using an approved crack filling method on static hairline cracks. When the surface is clean, sound and dry, proceed with coating application.

Note: When using CS-1200 for the first time it is advisable to coat a small test patch on a representative section of concrete and verify adhesion before proceeding to large scale coating projects. Mixing: Sitt horoughly prior to use. DO NOT THIN ON DILUTE CS-1200.

Priming: For applications with continuous water immersion ConSeal recommends using a surface primer. ConSeal CS-80 and ConSeal CS-85 are specifically designed for ConSeal's elastomeric sealants.

Consoling specification designees for Consoling stationeries sealants: Application: Apply CS-1200 to concrete structures between 40°-120° F. Do not apply CS-1200 to frozen concrete. Apply CS-1200 using a roller, brush or spray gun. If applying with airless spray gun, a spray tip of 0.015°-0.021° is recommended. In order to avoid "cracking" do not allow product to pool and do not apply the coast so to hick during application. When applying multiple coast so to thick during application. When applying multiple coast so to thick during applying through a cost alor CS-1200, apply at right angles to maximize film integrity. When spraying, hold spray gun 12°-24° away from the surface; spray an even, light coat over the entire surface. When the surface becomes dry to the touch, subsequent coast may be applied.

LIMITED WARRANTY

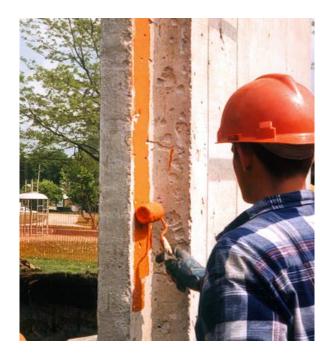
is information is presented in good tails, but we cannot calcipate all continues user which this information and our protects, or the products of all products

© 2022 CONCRETE SEALANTS, INC.

CONCRETE SEALANTS, INC. | 9325 STATE ROUTE 201, TIPP OTY, DH 45371, USA | WWW.CONSEAL.CO USA: CANADA +1800 332.7325 | INTERNATIONAL +1.937.845.8776 VERSION: 6-347-803

- Proper sealer and/or coating application is critical to its long-term effectiveness
 - Substrate preparation
 - Primer needs
 - Weather and temperature conditions at time of application
 - Curing needs
 - Application thickness vs. DFT
 - Reapplication time if using more than one coat
 - Application method

- Surfaces should be free of:
 - Dust and dirt
 - Laitance
 - Form release agent
 - Loose concrete or cement paste



- Ensure surfaces are sufficiently dry (typically saturated surface dry or dryer) prior to primer or coating application
 - Use the "tissue test" if you're unsure

- Primers serve two key purposes:
 - Help coatings and sealants adhere to concrete
 - Seal the concrete surface to enhance durability and watertightness

- A properly primed substrate performs better than an unprimed substrate
- Some primers dry hard while some dry tacky
 - Primers that dry tacky can be advantageous when installing sealant to vertical faces or installing joint wrap
 - Primers that dry tacky should not be used with coatings
- Primers are typically optional, but some coatings require primers

What about structures that have already been in service?

Use extra care for structures that have already been in service

- Thoroughly clean and dry the surface
- May need to use solvents* or other substances to remove previous coatings first
- Power washing or using a wire brush may be necessary

	Damp-proofer	Coal Tar Epoxy Alternative & Waterproofer	Waterproofer
Base	Waterborne acrylic	Waterborne acrylic	Hybrid
% solids	48% min.	72%	100%
Wet film thickness per coat (mils)	4-6	10-15	28-30
Dry film thickness per coat (mils)	2-3	8-12	28-30
# of coats needed	1 or more, depending on specifications	1 or more, depending on specifications	1 or 2, depending on specifications
Coverage per coat	225–300 SF per gal.	100-150 SF per gal.	50 SF per gal.

What are the goals?

- Waterproofing, damp-proofing, protection against harsh chemicals, etc.
- What substances will the coating be in contact with or exposed to during service, if any, and what is the pH and temperature of the substances?
 - Oil, gas, jet fuel, chemicals, cleaners, water, wastewater, etc.

Will the coating have intermittent, prolonged, or consistent exposure?

• Secondary containment, holding tank, conveyance structure, wetting and drying cycles, etc.

What kind of environment will the coating be exposed to during service?

• Sunlight, abrasion, scouring, foot traffic, vehicular traffic, direct bury, paved over, etc.

Is the structure already in service?

- Structures already in service have significantly more unknowns; will require thorough cleaning, drying, and other substrate preparation; will likely require engineering assessment if it's a repair application
- Are there any environmental factors that could be limiting to the installation?
 - Different chemistries dry and cure differently; some dry faster in low RH, some will not cure in temperatures lower than 40°F

Will the application require considerations for a confined space?

 Installer/applicator safety is critical; choose waterborne, 100% solids, and non-toxic options whenever possible

What are the desired finish characteristics?

• Rigid vs. flexible, hard vs. tacky

- Can the primer and coating be applied ahead of time?
 - Applying the primer and coating before the structures arrive on the jobsite will save time and labor, and can eliminate jobsite curing environment concerns

What is the desired service life?

 Some coating materials degrade over time and need to be re-applied, which adds maintenance costs and considerations

Summary / Learning Objectives

- Describe different situations where coatings improve concrete's performance and durability, including where damp-proofing, waterproofing, sulfate resistance, or acid resistance are needed.
- List which types of coatings are appropriate for those scenarios.
- Explain why a coal tar epoxy coating is requested on the exterior of structures, issues associated with coal tar epoxy, and what alternatives are available.
- Outline best practices for concrete surface preparation and coating application.

gainey's

Coatings for Underground Concrete Structures

Kayla Hanson, P.E. Concrete Sealants <u>khanson@conseal.com</u> | (937) 845-2524

Gainey's Wastewater Conference 2023